Aniphy

Logo de la plateforme Aniphy

Plateforme ANIPHY
Université Claude Bernard Lyon 1
Faculté de médecine
8 avenue Rockefeller
69373 Lyon Cedex 08

04 78 78 56 91

ANIPHY est un centre d’explorations physiologiques aiguës et chroniques spécialisé dans le phénotypage des rongeurs dédié aux domaines cardiovasculaire, métabolique et neuromusculaire.

Nos MISSIONS : vous proposer des prestations et du conseil, grâce à notre expertise dans l’exploration fonctionnelle de modèles physiologiques, physiopathologiques et thérapeutiques (rats et souris).

Mise à disposition d’équipements de pointe pour vos projets.

ANIPHY, intégrée dans les réseaux AniRA et Celphedia (Infrastructure Nationale), est labellisée IBISA. Cette plateforme fait partie du réseau des plateformes de la SFR Santé Lyon Est.

Elle s’adresse à la communauté scientifique académique et industrielle.

ANIPHY en chiffres

A1

statut sanitaire conventionnel

225

m² de superficie

> 10

équipements de pointe

4

personnels statutaires (niveaux concepteur et chirurgie)

ANIPHY propose des caractérisations phénotypiques sur le modèle rongeur, en respect avec la règlementation en vigueur :

  • Aide à la rédaction de Demande d’Autorisation de Projet (DAP)
  • Hébergement d’animaux en zone conventionnelle
  • Explorations in vivo
  • Microchirurgie
  • Explorations ex vivo
  • Prélèvements de sang et/ou de tissus
  • Remise des données et du rapport

Actualités

Notre projet «Automatic horizontal ladder to study motor coordination», mené en collaboration avec nos partenaires d’Anexplo (Toulouse) et de l’ICS (Strasbourg) a été sélectionné lors de l’appel à projets Celphedia 2024.

Ce financement permet l’achat d’un couloir de mesure des troubles de la marche : Locotronic (Intellibio).

Intérêts scientifiques : Le Locotronic est un appareil pour modéliser de façon précise les troubles de la marche et de l’équilibre chez les souris et les rats, pour des problèmes moteurs, psychomoteurs ou cognitifs. Il est destiné à mettre en évidence les défauts de la coordination motrice fine lors de la marche.

Dans le cadre des demandes d’équipement de la SFR Santé Lyon Est, nous avons obtenu en 2024 le financement du renouvellement de notre système de télémétrie DSI (Data Sciences International). Nous avons remis à jour notre plateforme de télémétrie : matériel (Matrix 2.0 (MX2), Ambient Pressure Reference (APR-2)) et logiciel Ponemah® pour l’acquisition et l’analyse des paramètres cardiovasculaires.

Cet équipement de pointe permet l’enregistrement de 8 animaux en simultané implantés avec les capteurs DSI PhysioTel™, PhysioTel™ HD, vous assurant une fiabilité des données de vos projets de recherche en physiologie intégrative cardiovasculaire.

Prestations

La plateforme dispose des équipements et de l’expertise nécessaires à l’expérimentation in vivo dans 3 grands domaines :

Équipements

Domaine métabolique

Calorimétrie indirecte

PHENOMASTER – TSE Systems (Bad Homburg, Allemagne)

Cet appareil de calorimétrie indirecte composé de 8 cages souris permet de mesurer la consommation d’O2 et la production de CO2 des animaux afin de déterminer un coefficient respiratoire (RER) et d’estimer la dépense énergétique (EE). Il mesure également la consommation de nourriture et d’eau et permet de rapporter la dépense énergétique en fonction de l’activité locomotrice et de l’alimentation.

Caractéristiques :

  • Cellules de mesures d’O2/CO2 au zirconium
  • Moniteur hydratation/alimentation souris
  • Cadre ActiMot2 XY
Mesure par RMN

Minispec LF90 II – BRUKER (Wissembourg, France)

Rats et souris

Détermine de manière non invasive la composition corporelle : masse grasse, maigre et liquidienne

Caractéristiques :

  • poids maxi des rats : 600 g
  • NMR fréquence 6.2 MHz
  • diamètre 90/60 mm
  • gamme 0.5 – 800 g
  • précision 0.05-0.3 g gras
  • poids maxi des souris : 50 g

Minispec mq-20 – BRUKER (Wissembourg, France)

Tissus et organes

Caractéristiques :

  • précision 2 mg gras
  • NMR fréquence 20 MHz
  • diamètre 18 mm
  • gamme 0.05 – 5 g

Minispec mq-60 – BRUKER (Wissembourg, France)

Tissus, organes et biopsies

Caractéristiques :

  • NMR fréquence 60 MHz
  • diamètre 7.5 mm
  • gamme 5 – 150 mg
  • précision 0.2 mg gras
Mesure d’activité physique imposée

Tapis de course – Ugo Basile (Gemonio, Italie)

Possibilité d’enregistrement des paramètres de course (vitesse, distance, durée de stimulation, temps) pour 6 souris ou 3 rats en simultané. Toutes les lignes sont entraînées par la même bande et à la même vitesse mais les résultats sont individuels.

Caractéristiques :

  • Inclinaison manuelle de -25 ° à + 25 ° par pas de 5 °
  • Vitesse entre 3 et 100 m/min (5-166 cm/sec), par palier de 1 m /min
  • Trois modes : vitesse constante, accélération constante, rampes personnalisées
  • Stimulus réglable selon l’espèce de 0 à 2 mA (par pas de 0,1 mA), fréquence de train d’onde réglable de 1, 2 ou 3 Hz

Domaine cardiovasculaire

Mesures de paramètres cardiovasculaires et biopotentiels par télémétrie

DSI (Data Sciences International, St Paul, Minnesota, USA)

Implants : PhysioTel, PhysioTel HD

Logiciel d’acquisition et d’analyse : Ponemah®

Possibilité d’enregistrer 8 animaux en simultané

Implants souris :

ModèlePressionBiopotentielTempératureActivité
PA-C10xx
ETA-F10xxx
HD-X11xxxx
TA-F10xx

Implants rats :

ModèlePressionBiopotentielTempératureActivité
HD-S10xxx
CTA-F40xxx
HD-S11xxxx
Mesure indirecte par pléthysmographie

BP 2000 Series II – Visitech Systems, Bioseb (Vitrolles, France)

Jusqu’à 4 rats et 4 souris en simultané

Mesure non invasive de la pression artérielle (systolique, diastolique et moyenne) et de la fréquence cardiaque

Mesure de la pression artérielle par cathétérisme sur rats

Utilisation d’un transducteur de pression, TNF-R, Becton Dickinson couplé avec un amplificateur, 13-4615-52, Gould (Cleveland).

Domaine neuromusculaire

Mesure de force ex vivo

Un système d’organes isolés dédié à l’enregistrement de la tension isométrique de préparations neuromusculaires isolées (hémi-diaphragme, edl, tibialis anterior).

Étude de la transmission neuromusculaire

Un poste d’électrophysiologie classique dédié à l’enregistrement des réponses synaptiques (ppmm, ppm) à la jonction neuromusculaire sur préparations neuromusculaires isolées.

Mesure d’électromyogramme sur souris

Système exploitation Natus avec le logiciel Synergy

L’EMG est utilisé chez la souris pour étudier les maladies neuromusculaires en analysant l’activité électrique des nerfs et des muscles.

Par exemple, après stimulation électrique du nerf sciatique, la réponse électrique au niveau du muscle du pied est enregistrée. Deux ondes sont présentes dans cette réponse électrique, une onde motrice (onde M), correspondant à la réponse du muscle à la stimulation des fibres motrices du nerf sciatique, et une onde sensitive (onde H) correspondant à la réponse du muscle à la stimulation des fibres sensorielles du nerf sciatique.

Demande de projet

Avant toute mise en oeuvre d’un protocole, veuillez nous contacter pour évaluer la faisabilité de votre projet et établir un devis.

N.B.: Un avis favorable du comité d’éthique et l’accord du ministère sont obligatoires pour débuter un protocole sur la plateforme.

Citation de la plateforme ANIPHY sur les publications

Un des moyens importants d’évaluation de notre activité repose sur la production scientifique des équipes utilisatrices. Afin que notre travail apparaisse, il est essentiel que vous citiez dans vos publications au niveau des remerciements ou en co-auteurs, selon leurs implications, la SFR Santé Lyon Est, la plateforme Aniphy, et les personnels.

Merci également de nous informer de ces publications lors de leur acceptation.

Phrase type proposée :

« We acknowledge the contribution of SFR Santé Lyon-Est (UCBL, UAR3453/CNRS, US7/Inserm) facility: ANIPHY (si souhaité : nom du/des personnels) et/ou the staff of ANIPHY, especially – nom du/des personnels, for their help xxx (précision si souhaité). We acknowledge the contributions of the CELPHEDIA Infrastructure (http://www.celphedia.eu/), especially the center AniRA in Lyon » (Aniphy fait partie du centre AniRA et du réseau Celphedia). »

en cas de signature, l’adresse à indiquer est :

Université Claude Bernard Lyon 1, CNRS, Inserm, SFR Santé Lyon Est UCBL, UAR3453, US7, Faculté de Médecine, 8 Avenue Rockefeller, 69008 Lyon, France.

Les publications de travaux réalisés à l’aide des modules RMN MiniSpec LF90 II, mq-20 et mq-60 doivent remercier clairement l’Equipex PHENOCAN en mentionnant le n° de l’ANR de l’Equipex, ANR -11-EQPX-0035 PHENOCAN.

Contact

Bibliographie

Voici les derniers articles déclarés pour la plateforme Aniphy :


6024536 CUU5LTIV 1 apa 10 default 116 https://sfrsantelyonest.univ-lyon1.fr/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%228ZNP59PE%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ghasemizadeh%20et%20al.%22%2C%22parsedDate%22%3A%222021-08-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGhasemizadeh%2C%20A.%2C%20Christin%2C%20E.%2C%20Guiraud%2C%20A.%2C%20Couturier%2C%20N.%2C%20Abitbol%2C%20M.%2C%20Risson%2C%20V.%2C%20Girard%2C%20E.%2C%20Jagla%2C%20C.%2C%20Soler%2C%20C.%2C%20Laddada%2C%20L.%2C%20Sanchez%2C%20C.%2C%20Jaque-Fernandez%2C%20F.-I.%2C%20Jacquemond%2C%20V.%2C%20Thomas%2C%20J.-L.%2C%20Lanfranchi%2C%20M.%2C%20Courchet%2C%20J.%2C%20Gondin%2C%20J.%2C%20Schaeffer%2C%20L.%2C%20%26amp%3B%20Gache%2C%20V.%20%282021%29.%20MACF1%20controls%20skeletal%20muscle%20function%20through%20the%20microtubule-dependent%20localization%20of%20extra-synaptic%20myonuclei%20and%20mitochondria%20biogenesis.%20%26lt%3Bi%26gt%3BeLife%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B10%26lt%3B%5C%2Fi%26gt%3B%2C%20e70490.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.7554%5C%2FeLife.70490%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.7554%5C%2FeLife.70490%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22MACF1%20controls%20skeletal%20muscle%20function%20through%20the%20microtubule-dependent%20localization%20of%20extra-synaptic%20myonuclei%20and%20mitochondria%20biogenesis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alireza%22%2C%22lastName%22%3A%22Ghasemizadeh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emilie%22%2C%22lastName%22%3A%22Christin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Guiraud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Couturier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marie%22%2C%22lastName%22%3A%22Abitbol%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valerie%22%2C%22lastName%22%3A%22Risson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuelle%22%2C%22lastName%22%3A%22Girard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christophe%22%2C%22lastName%22%3A%22Jagla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cedric%22%2C%22lastName%22%3A%22Soler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lilia%22%2C%22lastName%22%3A%22Laddada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Colline%22%2C%22lastName%22%3A%22Sanchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco-Ignacio%22%2C%22lastName%22%3A%22Jaque-Fernandez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Jacquemond%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Luc%22%2C%22lastName%22%3A%22Thomas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marine%22%2C%22lastName%22%3A%22Lanfranchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Courchet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Gondin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurent%22%2C%22lastName%22%3A%22Schaeffer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Gache%22%7D%5D%2C%22abstractNote%22%3A%22Skeletal%20muscles%20are%20composed%20of%20hundreds%20of%20multinucleated%20muscle%20fibers%20%28myofibers%29%20whose%20myonuclei%20are%20regularly%20positioned%20all%20along%20the%20myofiber%5Cu2019s%20periphery%20except%20the%20few%20ones%20clustered%20underneath%20the%20neuromuscular%20junction%20%28NMJ%29%20at%20the%20synaptic%20zone.%20This%20precise%20myonuclei%20organization%20is%20altered%20in%20different%20types%20of%20muscle%20disease%2C%20including%20centronuclear%20myopathies%20%28CNMs%29.%20However%2C%20the%20molecular%20machinery%20regulating%20myonuclei%20position%20and%20organization%20in%20mature%20myofibers%20remains%20largely%20unknown.%20Conversely%2C%20it%20is%20also%20unclear%20how%20peripheral%20myonuclei%20positioning%20is%20lost%20in%20the%20related%20muscle%20diseases.%20Here%2C%20we%20describe%20the%20microtubule-associated%20protein%2C%20MACF1%2C%20as%20an%20essential%20and%20evolutionary%20conserved%20regulator%20of%20myonuclei%20positioning%20and%20maintenance%2C%20in%20cultured%20mammalian%20myotubes%2C%20in%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Drosophila%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20muscle%2C%20and%20in%20adult%20mammalian%20muscle%20using%20a%20conditional%20muscle-specific%20knockout%20mouse%20model.%20In%20vitro%2C%20we%20show%20that%20MACF1%20controls%20microtubules%20dynamics%20and%20contributes%20to%20microtubule%20stabilization%20during%20myofiber%5Cu2019s%20maturation.%20In%20addition%2C%20we%20demonstrate%20that%20MACF1%20regulates%20the%20microtubules%20density%20specifically%20around%20myonuclei%2C%20and%2C%20as%20a%20consequence%2C%20governs%20myonuclei%20motion.%20Our%20in%20vivo%20studies%20show%20that%20MACF1%20deficiency%20is%20associated%20with%20alteration%20of%20extra-synaptic%20myonuclei%20positioning%20and%20microtubules%20network%20organization%2C%20both%20preceding%20NMJ%20fragmentation.%20Accordingly%2C%20MACF1%20deficiency%20results%20in%20reduced%20muscle%20excitability%20and%20disorganized%20triads%2C%20leaving%20voltage-activated%20sarcoplasmic%20reticulum%20Ca%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%2B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20release%20and%20maximal%20muscle%20force%20unchanged.%20Finally%2C%20adult%20MACF1-KO%20mice%20present%20an%20improved%20resistance%20to%20fatigue%20correlated%20with%20a%20strong%20increase%20in%20mitochondria%20biogenesis.%22%2C%22date%22%3A%222021-08-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.7554%5C%2FeLife.70490%22%2C%22ISSN%22%3A%222050-084X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Felifesciences.org%5C%2Farticles%5C%2F70490%22%2C%22collections%22%3A%5B%22K5DKASFS%22%2C%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A37%3A23Z%22%7D%7D%2C%7B%22key%22%3A%22GPBDCR46%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Jacquier%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BJacquier%2C%20A.%2C%20Risson%2C%20V.%2C%20Simonet%2C%20T.%2C%20Roussange%2C%20F.%2C%20Lacoste%2C%20N.%2C%20Ribault%2C%20S.%2C%20Carras%2C%20J.%2C%20Theuriet%2C%20J.%2C%20Girard%2C%20E.%2C%20Grosjean%2C%20I.%2C%20Le%20Goff%2C%20L.%2C%20Kr%26%23xF6%3Bger%2C%20S.%2C%20Meltoranta%2C%20J.%2C%20Bauch%26%23xE9%3B%2C%20S.%2C%20Sternberg%2C%20D.%2C%20Fournier%2C%20E.%2C%20Kostera-Pruszczyk%2C%20A.%2C%20O%26%23×2019%3BConnor%2C%20E.%2C%20Eymard%2C%20B.%2C%20%26%23×2026%3B%20Schaeffer%2C%20L.%20%282022%29.%20Severe%20congenital%20myasthenic%20syndromes%20caused%20by%20agrin%20mutations%20affecting%20secretion%20by%20motoneurons.%20%26lt%3Bi%26gt%3BActa%20Neuropathologica%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B144%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20707%26%23×2013%3B731.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00401-022-02475-8%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00401-022-02475-8%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Severe%20congenital%20myasthenic%20syndromes%20caused%20by%20agrin%20mutations%20affecting%20secretion%20by%20motoneurons%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arnaud%22%2C%22lastName%22%3A%22Jacquier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Risson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Simonet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florine%22%2C%22lastName%22%3A%22Roussange%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Lacoste%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shams%22%2C%22lastName%22%3A%22Ribault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Carras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Theuriet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuelle%22%2C%22lastName%22%3A%22Girard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Isabelle%22%2C%22lastName%22%3A%22Grosjean%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laure%22%2C%22lastName%22%3A%22Le%20Goff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephan%22%2C%22lastName%22%3A%22Kr%5Cu00f6ger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julia%22%2C%22lastName%22%3A%22Meltoranta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phanie%22%2C%22lastName%22%3A%22Bauch%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Damien%22%2C%22lastName%22%3A%22Sternberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Fournier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Kostera-Pruszczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emily%22%2C%22lastName%22%3A%22O%5Cu2019Connor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruno%22%2C%22lastName%22%3A%22Eymard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanns%22%2C%22lastName%22%3A%22Lochm%5Cu00fcller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%5Cu00e9cile%22%2C%22lastName%22%3A%22Martinat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurent%22%2C%22lastName%22%3A%22Schaeffer%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Congenital%20myasthenic%20syndromes%20%28CMS%29%20are%20predominantly%20characterized%20by%20muscle%20weakness%20and%20fatigability%20and%20can%20be%20caused%20by%20a%20variety%20of%20mutations%20in%20genes%20required%20for%20neuromuscular%20junction%20formation%20and%20maintenance.%20Among%20them%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20AGRN%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20encodes%20agrin%2C%20an%20essential%20synaptic%20protein%20secreted%20by%20motoneurons.%20We%20have%20identified%20severe%20CMS%20patients%20with%20uncharacterized%20p.R1671Q%2C%20p.R1698P%20and%20p.L1664P%20mutations%20in%20the%20LG2%20domain%20of%20agrin%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Overexpression%20in%20primary%20motoneurons%20cultures%20in%20vitro%20and%20in%20chick%20spinal%20motoneurons%20in%20vivo%20revealed%20that%20the%20mutations%20modified%20agrin%20trafficking%2C%20leading%20to%20its%20accumulation%20in%20the%20soma%20and%5C%2For%20in%20the%20axon.%20Expression%20of%20mutant%20agrins%20in%20cultured%20cells%20demonstrated%20accumulation%20of%20agrin%20in%20the%20endoplasmic%20reticulum%20associated%20with%20induction%20of%20unfolded%20protein%20response%20%28UPR%29%20and%20impaired%20secretion%20in%20the%20culture%20medium.%20Interestingly%2C%20evaluation%20of%20the%20specific%20activity%20of%20individual%20agrins%20on%20AChR%20cluster%20formation%20indicated%20that%20when%20secreted%2C%20mutant%20agrins%20retained%20a%20normal%20capacity%20to%20trigger%20the%20formation%20of%20AChR%20clusters.%20To%20confirm%20agrin%20accumulation%20and%20secretion%20defect%2C%20iPS%20cells%20were%20derived%20from%20a%20patient%20and%20differentiated%20into%20motoneurons.%20Patient%20iPS-derived%20motoneurons%20accumulated%20mutant%20agrin%20in%20the%20soma%20and%20increased%20XBP1%20mRNA%20splicing%2C%20suggesting%20UPR%20activation.%20Moreover%2C%20co-cultures%20of%20patient%20iPS-derived%20motoneurons%20with%20myotubes%20confirmed%20the%20deficit%20in%20agrin%20secretion%20and%20revealed%20a%20reduction%20in%20motoneuron%20survival.%20Altogether%2C%20we%20report%20the%20first%20mutations%20in%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20AGRN%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20gene%20that%20specifically%20affect%20agrin%20secretion%20by%20motoneurons.%20Interestingly%2C%20the%20three%20patients%20carrying%20these%20mutations%20were%20initially%20suspected%20of%20spinal%20muscular%20atrophy%20%28SMA%29.%20Therefore%2C%20in%20the%20presence%20of%20patients%20with%20a%20clinical%20presentation%20of%20SMA%20but%20without%20mutation%20in%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20SMN1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20gene%2C%20it%20can%20be%20worth%20to%20look%20for%20mutations%20in%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20AGRN%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%22%2C%22date%22%3A%2210%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs00401-022-02475-8%22%2C%22ISSN%22%3A%220001-6322%2C%201432-0533%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs00401-022-02475-8%22%2C%22collections%22%3A%5B%22K5DKASFS%22%2C%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A24%3A12Z%22%7D%7D%2C%7B%22key%22%3A%222S5VS4LP%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Estrada-Meza%20et%20al.%22%2C%22parsedDate%22%3A%222021-07-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BEstrada-Meza%2C%20J.%2C%20Videlo%2C%20J.%2C%20Bron%2C%20C.%2C%20Saint-B%26%23xE9%3Bat%2C%20C.%2C%20Silva%2C%20M.%2C%20Duboeuf%2C%20F.%2C%20Peyruchaud%2C%20O.%2C%20Rajas%2C%20F.%2C%20Mithieux%2C%20G.%2C%20%26amp%3B%20Gautier-Stein%2C%20A.%20%282021%29.%20Tamoxifen%20Treatment%20in%20the%20Neonatal%20Period%20Affects%20Glucose%20Homeostasis%20in%20Adult%20Mice%20in%20a%20Sex-Dependent%20Manner.%20%26lt%3Bi%26gt%3BEndocrinology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B162%26lt%3B%5C%2Fi%26gt%3B%287%29%2C%20bqab098.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1210%5C%2Fendocr%5C%2Fbqab098%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1210%5C%2Fendocr%5C%2Fbqab098%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tamoxifen%20Treatment%20in%20the%20Neonatal%20Period%20Affects%20Glucose%20Homeostasis%20in%20Adult%20Mice%20in%20a%20Sex-Dependent%20Manner%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Judith%22%2C%22lastName%22%3A%22Estrada-Meza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jasmine%22%2C%22lastName%22%3A%22Videlo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Clara%22%2C%22lastName%22%3A%22Bron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%5Cu00e9cile%22%2C%22lastName%22%3A%22Saint-B%5Cu00e9at%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marine%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fran%5Cu00e7ois%22%2C%22lastName%22%3A%22Duboeuf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Peyruchaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabienne%22%2C%22lastName%22%3A%22Rajas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gilles%22%2C%22lastName%22%3A%22Mithieux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amandine%22%2C%22lastName%22%3A%22Gautier-Stein%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Tamoxifen%20is%20a%20selective%20estrogen%20receptor%20modulator%20used%20to%20activate%20the%20CREERT2%20recombinase%2C%20allowing%20tissue-specific%20and%20temporal%20control%20of%20the%20somatic%20mutagenesis%20to%20generate%20transgenic%20mice.%20Studies%20integrating%20development%20and%20metabolism%20require%20a%20genetic%20modification%20induced%20by%20a%20neonatal%20tamoxifen%20administration.%20Here%2C%20we%20investigate%20the%20effects%20of%20a%20neonatal%20tamoxifen%20administration%20on%20energy%20homeostasis%20in%20adult%20male%20and%20female%20C57BL%5C%2F6J%20mice.%20C57BL%5C%2F6J%20male%20and%20female%20mouse%20pups%20received%20a%20single%20injection%20of%20tamoxifen%201%20day%20after%20birth%20%28NTT%29%20and%20were%20fed%20a%20high-fat%5C%2Fhigh-sucrose%20diet%20at%206%20weeks%20of%20age.%20We%20measured%20weight%2C%20body%20composition%2C%20glucose%20and%20insulin%20tolerance%2C%20basal%20metabolism%2C%20and%20tibia%20length%20and%20weight%20in%20adult%20mice.%20The%20neonatal%20tamoxifen%20administration%20exerted%20long-term%2C%20sex-dependent%20effects%20on%20energy%20homeostasis.%20NTT%20female%20mice%20became%20overweight%20and%20developed%20impaired%20glucose%20control%20in%20comparison%20to%20vehicle-treated%20littermates.%20NTT%20females%20exhibited%2060%25%20increased%20fat%20mass%2C%20increased%20food%20intake%2C%20decreased%20physical%20activity%20and%20energy%20expenditure%2C%20impaired%20glucose%20and%20insulin%20tolerance%2C%20and%20fasting%20hyperglycemia%20and%20hyperinsulinemia.%20In%20contrast%2C%20NTT%20male%20mice%20exhibited%20a%20modest%20amelioration%20of%20glucose%20and%20insulin%20tolerance%20and%20long-term%20decreased%20lean%20mass%20linked%20to%20decreased%20bone%20weight.%20These%20results%20suggest%20that%20the%20neonatal%20tamoxifen%20administration%20exerted%20a%20marked%20and%20sex-dependent%20influence%20on%20adult%20energy%20homeostasis%20and%20bone%20weight%20and%20must%20therefore%20be%20used%20with%20caution%20for%20the%20development%20of%20transgenic%20mouse%20models%20regarding%20studies%20on%20energy%20homeostasis%20and%20bone%20biology.%22%2C%22date%22%3A%222021-07-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1210%5C%2Fendocr%5C%2Fbqab098%22%2C%22ISSN%22%3A%220013-7227%2C%201945-7170%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facademic.oup.com%5C%2Fendo%5C%2Farticle%5C%2Fdoi%5C%2F10.1210%5C%2Fendocr%5C%2Fbqab098%5C%2F6277101%22%2C%22collections%22%3A%5B%22K5DKASFS%22%2C%22LUQ7ZPMM%22%2C%22CUU5LTIV%22%2C%22FKFCWCTY%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A18%3A53Z%22%7D%7D%2C%7B%22key%22%3A%22Q9VHIRE3%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vassal%20et%20al.%22%2C%22parsedDate%22%3A%222018-02-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BVassal%2C%20O.%2C%20Del%20Carmine%2C%20P.%2C%20Desgranges%2C%20F.-P.%2C%20Bouvet%2C%20L.%2C%20Lilot%2C%20M.%2C%20Gadot%2C%20N.%2C%20Timour-Chah%2C%20Q.%2C%20%26amp%3B%20Chassard%2C%20D.%20%282018%29.%20Assessment%20of%20Neurological%20Toxicity%20of%20Hydroxyethyl%20Starch%20130%5C%2F0.4%20Injected%20in%20the%20Intrathecal%20Space%20in%20Rats.%20%26lt%3Bi%26gt%3BPain%20Medicine%26lt%3B%5C%2Fi%26gt%3B.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fpm%5C%2Fpny005%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fpm%5C%2Fpny005%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Assessment%20of%20Neurological%20Toxicity%20of%20Hydroxyethyl%20Starch%20130%5C%2F0.4%20Injected%20in%20the%20Intrathecal%20Space%20in%20Rats%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O%22%2C%22lastName%22%3A%22Vassal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P%22%2C%22lastName%22%3A%22Del%20Carmine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F-P%22%2C%22lastName%22%3A%22Desgranges%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%22%2C%22lastName%22%3A%22Bouvet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M%22%2C%22lastName%22%3A%22Lilot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N%22%2C%22lastName%22%3A%22Gadot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Q%22%2C%22lastName%22%3A%22Timour-Chah%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Chassard%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-02-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1093%5C%2Fpm%5C%2Fpny005%22%2C%22ISSN%22%3A%221526-2375%2C%201526-4637%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facademic.oup.com%5C%2Fpainmedicine%5C%2Fadvance-article%5C%2Fdoi%5C%2F10.1093%5C%2Fpm%5C%2Fpny005%5C%2F4840843%22%2C%22collections%22%3A%5B%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A18%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22LZ88LWQ7%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Julien%20et%20al.%22%2C%22parsedDate%22%3A%222017%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BJulien%2C%20C.%2C%20Or%26%23xE9%3Ba%2C%20V.%2C%20Quintin%2C%20L.%2C%20Piriou%2C%20V.%2C%20%26amp%3B%20Barr%26%23xE8%3Bs%2C%20C.%20%282017%29.%20Renal%20sympathetic%20nerve%20activity%20and%20vascular%20reactivity%20to%20phenylephrine%20after%20lipopolysaccharide%20administration%20in%20conscious%20rats.%20%26lt%3Bi%26gt%3BPhysiological%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B5%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20e13139.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.14814%5C%2Fphy2.13139%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.14814%5C%2Fphy2.13139%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Renal%20sympathetic%20nerve%20activity%20and%20vascular%20reactivity%20to%20phenylephrine%20after%20lipopolysaccharide%20administration%20in%20conscious%20rats%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claude%22%2C%22lastName%22%3A%22Julien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Or%5Cu00e9a%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luc%22%2C%22lastName%22%3A%22Quintin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Piriou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Barr%5Cu00e8s%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2202%5C%2F2017%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.14814%5C%2Fphy2.13139%22%2C%22ISSN%22%3A%222051817X%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdoi.wiley.com%5C%2F10.14814%5C%2Fphy2.13139%22%2C%22collections%22%3A%5B%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A18%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22MYJKR7EP%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Aimond%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BAimond%2C%20G.%2C%20Nicolle%2C%20S.%2C%20Debret%2C%20R.%2C%20Or%26%23xE9%3Ba%2C%20V.%2C%20Josset-Lamaugarny%2C%20A.%2C%20Palierne%2C%20J.-F.%2C%20Sommer%2C%20P.%2C%20Sigaudo-Roussel%2C%20D.%2C%20%26amp%3B%20Fromy%2C%20B.%20%282023%29.%20Dill%20Extract%20Preserves%20Dermal%20Elastic%20Fiber%20Network%20and%20Functionality%3A%20Implication%20of%20Elafin.%20%26lt%3Bi%26gt%3BSkin%20Pharmacology%20and%20Physiology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B36%26lt%3B%5C%2Fi%26gt%3B%285%29%2C%20249%26%23×2013%3B258.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1159%5C%2F000534248%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1159%5C%2F000534248%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dill%20Extract%20Preserves%20Dermal%20Elastic%20Fiber%20Network%20and%20Functionality%3A%20Implication%20of%20Elafin%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%5Cu00e9raldine%22%2C%22lastName%22%3A%22Aimond%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phane%22%2C%22lastName%22%3A%22Nicolle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romain%22%2C%22lastName%22%3A%22Debret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Or%5Cu00e9a%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Audrey%22%2C%22lastName%22%3A%22Josset-Lamaugarny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Fran%5Cu00e7ois%22%2C%22lastName%22%3A%22Palierne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascal%22%2C%22lastName%22%3A%22Sommer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dominique%22%2C%22lastName%22%3A%22Sigaudo-Roussel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%5Cu00e9reng%5Cu00e8re%22%2C%22lastName%22%3A%22Fromy%22%7D%5D%2C%22abstractNote%22%3A%22%26lt%3Bb%26gt%3B%26lt%3Bi%26gt%3BIntroduction%3A%26lt%3B%5C%2Fi%26gt%3B%26lt%3B%5C%2Fb%26gt%3B%20Elastic%20skin%20fibers%20lose%20their%20mechanical%20properties%20during%20aging%20due%20to%20enzymatic%20degradation%2C%20lack%20of%20maturation%2C%20or%20posttranslational%20modifications.%20Dill%20extract%20has%20been%20observed%20to%20increase%20elastin%20protein%20expression%20and%20maturation%20in%20a%203D%20skin%20model%2C%20to%20improve%20mechanical%20properties%20of%20the%20skin%2C%20to%20increase%20elastin%20protein%20expression%20in%20vascular%20smooth%20muscle%20cells%2C%20to%20preserve%20aortic%20elastic%20lamella%2C%20and%20to%20prevent%20glycation.%20%26lt%3Bb%26gt%3B%26lt%3Bi%26gt%3BObjective%3A%26lt%3B%5C%2Fi%26gt%3B%26lt%3B%5C%2Fb%26gt%3B%20The%20aim%20of%20the%20study%20was%20to%20highlight%20dill%20actions%20on%20elastin%20fibers%20during%20aging%20thanks%20to%20elastase%20digestion%20model%20and%20the%20underlying%20mechanism.%20%26lt%3Bb%26gt%3B%26lt%3Bi%26gt%3BMethods%3A%26lt%3B%5C%2Fi%26gt%3B%26lt%3B%5C%2Fb%26gt%3B%20In%20this%20study%2C%20elastic%20fibers%20produced%20by%20dermal%20fibroblasts%20in%202D%20culture%20model%20were%20injured%20by%20elastase%2C%20and%20we%20observed%20the%20action%20of%20dill%20extract%20on%20elastic%20network%20by%20elastin%20immunofluorescence.%20Then%20action%20of%20dill%20extract%20was%20examined%20on%20mice%20skin%20by%20injuring%20elastin%20fibers%20by%20intradermal%20injection%20of%20elastase.%20Then%20elastin%20fibers%20were%20observed%20by%20second%20harmonic%20generation%20microscopy%2C%20and%20their%20functionality%20was%20evaluated%20by%20oscillatory%20shear%20stress%20tests.%20In%20order%20to%20understand%20mechanism%20by%20which%20dill%20acted%20on%20elastin%20fibers%2C%20enzymatic%20tests%20and%20real-time%20qPCR%20on%20cultured%20fibroblasts%20were%20performed.%20%26lt%3Bb%26gt%3B%26lt%3Bi%26gt%3BResults%3A%26lt%3B%5C%2Fi%26gt%3B%26lt%3B%5C%2Fb%26gt%3B%20We%20evidence%20in%20vitro%20that%20dill%20extract%20is%20able%20to%20prevent%20elastin%20from%20elastase%20digestion.%20And%20we%20confirm%20in%20vivo%20that%20dill%20extract%20treatment%20prevents%20elastase%20digestion%2C%20allowing%20preservation%20of%20the%20cutaneous%20elastic%20network%20in%20mice%20and%20preservation%20of%20the%20cutaneous%20elastic%20properties.%20Although%20dill%20extract%20does%20not%20directly%20inhibit%20elastase%20activity%2C%20our%20results%20show%20that%20dill%20extract%20treatment%20increases%20mRNA%20expression%20of%20the%20endogenous%20inhibitor%20of%20elastase%2C%20elafin.%20%26lt%3Bb%26gt%3B%26lt%3Bi%26gt%3BConclusion%3A%26lt%3B%5C%2Fi%26gt%3B%26lt%3B%5C%2Fb%26gt%3B%20Dill%20extract%20can%20thus%20be%20used%20to%20counteract%20the%20negative%20effects%20of%20elastase%20on%20the%20cutaneous%20elastic%20fiber%20network%20through%20modulation%20of%20%26lt%3Bi%26gt%3BPI3%26lt%3B%5C%2Fi%26gt%3B%20gene%20expression.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1159%5C%2F000534248%22%2C%22ISSN%22%3A%221660-5527%2C%201660-5535%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fkarger.com%5C%2Farticle%5C%2Fdoi%5C%2F10.1159%5C%2F000534248%22%2C%22collections%22%3A%5B%22K5DKASFS%22%2C%22CUU5LTIV%22%2C%22H4ZNQPUL%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A16%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22UQ2ALTSN%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Belotti%20et%20al.%22%2C%22parsedDate%22%3A%222024-04-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BBelotti%2C%20E.%2C%20Lacoste%2C%20N.%2C%20Iftikhar%2C%20A.%2C%20Simonet%2C%20T.%2C%20Papin%2C%20C.%2C%20Osseni%2C%20A.%2C%20Streichenberger%2C%20N.%2C%20Mari%2C%20P.-O.%2C%20Girard%2C%20E.%2C%20Graies%2C%20M.%2C%20Giglia-Mari%2C%20G.%2C%20Dimitrov%2C%20S.%2C%20Hamiche%2C%20A.%2C%20%26amp%3B%20Schaeffer%2C%20L.%20%282024%29.%20H2A.Z%20is%20involved%20in%20premature%20aging%20and%20DSB%20repair%20initiation%20in%20muscle%20fibers.%20%26lt%3Bi%26gt%3BNucleic%20Acids%20Research%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B52%26lt%3B%5C%2Fi%26gt%3B%286%29%2C%203031%26%23×2013%3B3049.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fnar%5C%2Fgkae020%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fnar%5C%2Fgkae020%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22H2A.Z%20is%20involved%20in%20premature%20aging%20and%20DSB%20repair%20initiation%20in%20muscle%20fibers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Edwige%22%2C%22lastName%22%3A%22Belotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Lacoste%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arslan%22%2C%22lastName%22%3A%22Iftikhar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Simonet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christophe%22%2C%22lastName%22%3A%22Papin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%22%2C%22lastName%22%3A%22Osseni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Streichenberger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pierre-Olivier%22%2C%22lastName%22%3A%22Mari%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuelle%22%2C%22lastName%22%3A%22Girard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohamed%22%2C%22lastName%22%3A%22Graies%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuseppina%22%2C%22lastName%22%3A%22Giglia-Mari%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Dimitrov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ali%22%2C%22lastName%22%3A%22Hamiche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurent%22%2C%22lastName%22%3A%22Schaeffer%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Histone%20variants%20are%20key%20epigenetic%20players%2C%20but%20their%20functional%20and%20physiological%20roles%20remain%20poorly%20understood.%20Here%2C%20we%20show%20that%20depletion%20of%20the%20histone%20variant%20H2A.Z%20in%20mouse%20skeletal%20muscle%20causes%20oxidative%20stress%2C%20oxidation%20of%20proteins%2C%20accumulation%20of%20DNA%20damages%2C%20and%20both%20neuromuscular%20junction%20and%20mitochondria%20lesions%20that%20consequently%20lead%20to%20premature%20muscle%20aging%20and%20reduced%20life%20span.%20Investigation%20of%20the%20molecular%20mechanisms%20involved%20shows%20that%20H2A.Z%20is%20required%20to%20initiate%20DNA%20double%20strand%20break%20repair%20by%20recruiting%20Ku80%20at%20DNA%20lesions.%20This%20is%20achieved%20via%20specific%20interactions%20of%20Ku80%20vWA%20domain%20with%20H2A.Z.%20Taken%20as%20a%20whole%2C%20our%20data%20reveal%20that%20H2A.Z%20containing%20nucleosomes%20act%20as%20a%20molecular%20platform%20to%20bring%20together%20the%20proteins%20required%20to%20initiate%20and%20process%20DNA%20double%20strand%20break%20repair.%22%2C%22date%22%3A%222024-04-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1093%5C%2Fnar%5C%2Fgkae020%22%2C%22ISSN%22%3A%220305-1048%2C%201362-4962%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facademic.oup.com%5C%2Fnar%5C%2Farticle%5C%2F52%5C%2F6%5C%2F3031%5C%2F7590905%22%2C%22collections%22%3A%5B%22K5DKASFS%22%2C%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A16%3A32Z%22%7D%7D%2C%7B%22key%22%3A%229BTGJGCI%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Neggazi%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-11%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BNeggazi%2C%20S.%2C%20Hamlat%2C%20N.%2C%20Berdja%2C%20S.%2C%20Boumaza%2C%20S.%2C%20Smail%2C%20L.%2C%20Beylot%2C%20M.%2C%20%26amp%3B%20Aouichat-Bouguerra%2C%20S.%20%282023%29.%20Hypothyroidism%20increases%20angiotensinogen%20gene%20expression%20associated%20with%20vascular%20smooth%20muscle%20cells%20cholesterol%20metabolism%20dysfunction%20and%20aorta%20remodeling%20in%20Psammomys%20obesus.%20%26lt%3Bi%26gt%3BScientific%20Reports%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B13%26lt%3B%5C%2Fi%26gt%3B%281%29%2C%2019681.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-023-46899-y%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-023-46899-y%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Hypothyroidism%20increases%20angiotensinogen%20gene%20expression%20associated%20with%20vascular%20smooth%20muscle%20cells%20cholesterol%20metabolism%20dysfunction%20and%20aorta%20remodeling%20in%20Psammomys%20obesus%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Samia%22%2C%22lastName%22%3A%22Neggazi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nadjiba%22%2C%22lastName%22%3A%22Hamlat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sihem%22%2C%22lastName%22%3A%22Berdja%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saliha%22%2C%22lastName%22%3A%22Boumaza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leila%22%2C%22lastName%22%3A%22Smail%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michel%22%2C%22lastName%22%3A%22Beylot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Souhila%22%2C%22lastName%22%3A%22Aouichat-Bouguerra%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20It%20has%20been%20previously%20shown%20that%20clinical%20cardiovascular%20manifestations%20can%20be%20caused%20by%20mild%20changes%20in%20thyroid%20function.%20However%2C%20the%20implication%20of%20angiotensinogen%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Agt%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20vascular%20smooth%20muscle%20cells%20%28VSMCs%29%20dysfunction%20in%20the%20pathophysiology%20of%20cardiovascular%20manifestations%20in%20hypothyroidism%20have%20not%20yet%20been%20investigated.%20We%20induced%20experimental%20hypothyroidism%20in%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Psammomys%20obesus%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20administering%20carbimazole%20for%20five%20months.%20At%20the%20end%20of%20the%20experiment%2C%20the%20animals%20were%20sacrificed%20and%20histopathological%20analysis%20was%20performed%20using%20Masson%26%23039%3Bs%20trichrome%20staining%20of%20the%20aorta%20and%20thyroid%20gland.%20The%20expression%20of%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Agt%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20gene%20and%20the%20genes%20implicated%20in%20cholesterol%20metabolism%20regulation%20in%20the%20liver%20and%20VSMCs%20was%20determined%20by%20qRT-PCR.%20Histological%20observations%20revealed%20profound%20remodeling%20of%20the%20aorta%20structure%20in%20animals%20with%20hypothyroidism.%20In%20addition%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Agt%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20gene%20expression%20in%20the%20liver%20was%20significantly%20increased.%20In%20vitro%20study%2C%20showed%20that%20VSMCs%20from%20hypothyroid%20animals%20overexpressed%203-hydroxy-3-methylglutaryl%20coenzyme%20A%20reductase%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Hmgcr%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20Acyl%20CoA%3Acholesterol%20acyltransferase%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Acat%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%201%2C%20with%20failure%20to%20increase%20the%20efflux%20pathway%20genes%20%28ATP-binding%20cassette%20subfamily%20G%20member%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Abcg%29%201%20and%204%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20These%20results%20suggest%20that%20hypothyroidism%20leads%20to%20vascular%20alterations%2C%20including%20structural%20remodeling%2C%20VSMCs%20cholesterol%20metabolism%20dysfunction%2C%20and%20their%20switch%20to%20a%20synthetic%20phenotype%2C%20together%20with%20hepatic%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Agt%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20gene%20overexpression.%22%2C%22date%22%3A%222023-11-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-023-46899-y%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-023-46899-y%22%2C%22collections%22%3A%5B%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A11%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22DNUFBEVR%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gouez%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BGouez%2C%20M.%2C%20R%26%23xE9%3Bbillard%2C%20A.%2C%20Thomas%2C%20A.%2C%20Beaumel%2C%20S.%2C%20Matera%2C%20E.-L.%2C%20Gouraud%2C%20E.%2C%20Orfila%2C%20L.%2C%20Martin%2C%20B.%2C%20P%26%23xE9%3Brol%2C%20O.%2C%20Chaveroux%2C%20C.%2C%20Chirico%2C%20E.%20N.%2C%20Dumontet%2C%20C.%2C%20Fervers%2C%20B.%2C%20%26amp%3B%20Pialoux%2C%20V.%20%282024%29.%20Combined%20effects%20of%20exercise%20and%20immuno-chemotherapy%20treatments%20on%20tumor%20growth%20in%20MC38%20colorectal%20cancer-bearing%20mice.%20%26lt%3Bi%26gt%3BFrontiers%20in%20Immunology%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B15%26lt%3B%5C%2Fi%26gt%3B%2C%201368550.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffimmu.2024.1368550%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffimmu.2024.1368550%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Combined%20effects%20of%20exercise%20and%20immuno-chemotherapy%20treatments%20on%20tumor%20growth%20in%20MC38%20colorectal%20cancer-bearing%20mice%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manon%22%2C%22lastName%22%3A%22Gouez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Am%5Cu00e9lie%22%2C%22lastName%22%3A%22R%5Cu00e9billard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amandine%22%2C%22lastName%22%3A%22Thomas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sabine%22%2C%22lastName%22%3A%22Beaumel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva-Laure%22%2C%22lastName%22%3A%22Matera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Etienne%22%2C%22lastName%22%3A%22Gouraud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luz%22%2C%22lastName%22%3A%22Orfila%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brice%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivia%22%2C%22lastName%22%3A%22P%5Cu00e9rol%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%5Cu00e9dric%22%2C%22lastName%22%3A%22Chaveroux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erica%20N.%22%2C%22lastName%22%3A%22Chirico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Dumontet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%5Cu00e9atrice%22%2C%22lastName%22%3A%22Fervers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Pialoux%22%7D%5D%2C%22abstractNote%22%3A%22Acute%20exercise%20induces%20transient%20modifications%20in%20the%20tumor%20microenvironment%20and%20has%20been%20linked%20to%20reduced%20tumor%20growth%20along%20with%20increased%20infiltration%20of%20immune%20cells%20within%20the%20tumor%20in%20mouse%20models.%20In%20this%20study%2C%20we%20aimed%20to%20evaluate%20the%20impact%20of%20acute%20exercise%20before%20treatment%20administration%20on%20tumor%20growth%20in%20a%20mice%20model%20of%20MC38%20colorectal%20cancer%20receiving%20an%20immune%20checkpoint%20inhibitor%20%28ICI%29%20and%20chemotherapy.%20Six-week-old%20mice%20injected%20with%20colorectal%20cancer%20cells%20%28MC38%29%20were%20randomized%20in%204%20groups%3A%20control%20%28CTRL%29%2C%20immuno-chemotherapy%20%28TRT%29%2C%20exercise%20%28EXE%29%20and%20combined%20intervention%20%28TRT%5C%2FEXE%29.%20Both%20TRT%20and%20TRT-EXE%20received%20ICI%3A%20anti-PD1-1%20%281%20injection%5C%2Fweek%29%20and%20capecitabine%20%2B%20oxaliplatin%20%285%20times%20a%20week%29%20for%201%20week%20%28experimentation%201%29%2C%203%20weeks%20%28experimentation%202%29.%20TRT-EXE%20and%20EXE%20groups%20were%20submitted%20to%2050%20minutes%20of%20treadmill%20exercise%20before%20each%20treatment%20administration.%20Over%20the%20protocol%20duration%2C%20tumor%20size%20has%20been%20monitored%20daily.%20Tumor%20growth%20and%20microenvironment%20parameters%20were%20measured%20after%20the%20intervention%20on%20Day%207%20%28D7%29%20and%20Day%2016%20%28D16%29.%20From%20day%204%20to%20day%207%2C%20tumor%20volumes%20decreased%20in%20the%20EXE%5C%2FTRT%20group%20while%20remaining%20stable%20in%20the%20TRT%20group%20%28p%3D0.0213%29.%20From%20day%207%20until%20day%2016%20tumor%20volume%20decreased%20with%20no%20significant%20difference%20between%20TRT%20and%20TRT%5C%2FEXE.%20At%20D7%20the%20TRT%5C%2FEXE%20group%20exhibited%20a%20higher%20total%20infiltrate%20T%20cell%20%28p%3D0.0118%29%20and%20CD8%2B%20cytotoxic%20T%20cell%20%28p%3D0.0031%29.%20At%20D16%2C%20tumor%20marker%20of%20apoptosis%2C%20vascular%20integrity%20and%20inflammation%20were%20not%20significantly%20different%20between%20TRT%20and%20TRT%5C%2FEXE.%20Our%20main%20result%20was%20that%20acute%20exercise%20before%20immuno-chemotherapy%20administration%20significantly%20decreased%20early-phase%20tumor%20growth%20%28D0%20to%20D4%29.%20Additionally%2C%20exercise%20led%20to%20immune%20cell%20infiltration%20changes%20during%20the%20first%20week%20after%20exercise%2C%20while%20no%20significant%20molecular%20alterations%20in%20the%20tumor%20were%20observed%203%20weeks%20after%20exercise.%22%2C%22date%22%3A%222024-2-15%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffimmu.2024.1368550%22%2C%22ISSN%22%3A%221664-3224%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffimmu.2024.1368550%5C%2Ffull%22%2C%22collections%22%3A%5B%225XTY8I85%22%2C%22CUU5LTIV%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A11%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22GTQ27FXF%22%2C%22library%22%3A%7B%22id%22%3A6024536%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vily%5Cu2010Petit%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BVily%26%23×2010%3BPetit%2C%20J.%2C%20Soty%26%23×2010%3BRoca%2C%20M.%2C%20Silva%2C%20M.%2C%20Micoud%2C%20M.%2C%20Evrard%2C%20F.%2C%20Bron%2C%20C.%2C%20Raffin%2C%20M.%2C%20Beiroa%2C%20D.%2C%20Nogueiras%2C%20R.%2C%20Roussel%2C%20D.%2C%20Gautier%26%23×2010%3BStein%2C%20A.%2C%20Rajas%2C%20F.%2C%20Cota%2C%20D.%2C%20%26amp%3B%20Mithieux%2C%20G.%20%282024%29.%20Antiobesity%20effects%20of%20intestinal%20gluconeogenesis%20are%20mediated%20by%20the%20brown%20adipose%20tissue%20sympathetic%20nervous%20system.%20%26lt%3Bi%26gt%3BObesity%26lt%3B%5C%2Fi%26gt%3B%2C%20%26lt%3Bi%26gt%3B32%26lt%3B%5C%2Fi%26gt%3B%284%29%2C%20710%26%23×2013%3B722.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Foby.23985%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Foby.23985%26lt%3B%5C%2Fa%26gt%3B%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Antiobesity%20effects%20of%20intestinal%20gluconeogenesis%20are%20mediated%20by%20the%20brown%20adipose%20tissue%20sympathetic%20nervous%20system%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justine%22%2C%22lastName%22%3A%22Vily%5Cu2010Petit%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maud%22%2C%22lastName%22%3A%22Soty%5Cu2010Roca%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marine%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manon%22%2C%22lastName%22%3A%22Micoud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F%5Cu00e9licie%22%2C%22lastName%22%3A%22Evrard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Clara%22%2C%22lastName%22%3A%22Bron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margaux%22%2C%22lastName%22%3A%22Raffin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Beiroa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rub%5Cu00e9n%22%2C%22lastName%22%3A%22Nogueiras%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Damien%22%2C%22lastName%22%3A%22Roussel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amandine%22%2C%22lastName%22%3A%22Gautier%5Cu2010Stein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabienne%22%2C%22lastName%22%3A%22Rajas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniela%22%2C%22lastName%22%3A%22Cota%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gilles%22%2C%22lastName%22%3A%22Mithieux%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Objective%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Intestinal%20gluconeogenesis%20%28IGN%29%2C%20via%20the%20initiation%20of%20a%20gut%5Cu2010brain%20nervous%20circuit%2C%20accounts%20for%20the%20metabolic%20benefits%20linked%20to%20dietary%20proteins%20or%20fermentable%20fiber%20in%20rodents%20and%20has%20been%20positively%20correlated%20with%20the%20rapid%20amelioration%20of%20body%20weight%20after%20gastric%20bypass%20surgery%20in%20humans%20with%20obesity.%20In%20particular%2C%20the%20activation%20of%20IGN%20moderates%20the%20development%20of%20hepatic%20steatosis%20accompanying%20obesity.%20In%20this%20study%2C%20we%20investigated%20the%20specific%20effects%20of%20IGN%20on%20adipose%20tissue%20metabolism%2C%20independent%20of%20its%20induction%20by%20nutritional%20manipulation.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Methods%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20used%20two%20transgenic%20mouse%20models%20of%20suppression%20or%20overexpression%20of%20G6pc1%2C%20the%20catalytic%20subunit%20of%20glucose%5Cu20106%20phosphatase%2C%20which%20is%20the%20key%20enzyme%20of%20endogenous%20glucose%20production%20specifically%20in%20the%20intestine.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Results%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Under%20a%20hypercaloric%20diet%2C%20mice%20overexpressing%20IGN%20showed%20lower%20adiposity%20and%20higher%20thermogenic%20capacities%20than%20wild%5Cu2010type%20mice%2C%20featuring%20marked%20browning%20of%20white%20adipose%20tissue%20%28WAT%29%20and%20prevention%20of%20the%20whitening%20of%20brown%20adipose%20tissue%20%28BAT%29.%20Sympathetic%20denervation%20restricted%20to%20BAT%20caused%20the%20loss%20of%20the%20antiobesity%20effects%20associated%20with%20IGN.%20Conversely%2C%20IGN%5Cu2010deficient%20mice%20exhibited%20an%20increase%20in%20adiposity%20under%20a%20standard%20diet%2C%20which%20was%20associated%20with%20decreased%20expression%20of%20markers%20of%20thermogenesis%20in%20both%20BAT%20and%20WAT.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Conclusions%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20IGN%20is%20sufficient%20to%20activate%20the%20sympathetic%20nervous%20system%20and%20prevent%20the%20expansion%20and%20the%20metabolic%20alterations%20of%20BAT%20and%20WAT%20metabolism%20under%20a%20high%5Cu2010calorie%20diet%2C%20thereby%20preventing%20the%20development%20of%20obesity.%20These%20data%20increase%20knowledge%20of%20the%20mechanisms%20of%20weight%20reduction%20in%20gastric%20bypass%20surgery%20and%20pave%20the%20way%20for%20new%20approaches%20to%20prevent%20or%20cure%20obesity.%22%2C%22date%22%3A%2204%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Foby.23985%22%2C%22ISSN%22%3A%221930-7381%2C%201930-739X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Foby.23985%22%2C%22collections%22%3A%5B%22K5DKASFS%22%2C%22LUQ7ZPMM%22%2C%22CUU5LTIV%22%2C%22FKFCWCTY%22%5D%2C%22dateModified%22%3A%222025-06-13T09%3A10%3A48Z%22%7D%7D%5D%7D
Ghasemizadeh, A., Christin, E., Guiraud, A., Couturier, N., Abitbol, M., Risson, V., Girard, E., Jagla, C., Soler, C., Laddada, L., Sanchez, C., Jaque-Fernandez, F.-I., Jacquemond, V., Thomas, J.-L., Lanfranchi, M., Courchet, J., Gondin, J., Schaeffer, L., & Gache, V. (2021). MACF1 controls skeletal muscle function through the microtubule-dependent localization of extra-synaptic myonuclei and mitochondria biogenesis. eLife, 10, e70490. https://doi.org/10.7554/eLife.70490
Jacquier, A., Risson, V., Simonet, T., Roussange, F., Lacoste, N., Ribault, S., Carras, J., Theuriet, J., Girard, E., Grosjean, I., Le Goff, L., Kröger, S., Meltoranta, J., Bauché, S., Sternberg, D., Fournier, E., Kostera-Pruszczyk, A., O’Connor, E., Eymard, B., … Schaeffer, L. (2022). Severe congenital myasthenic syndromes caused by agrin mutations affecting secretion by motoneurons. Acta Neuropathologica, 144(4), 707–731. https://doi.org/10.1007/s00401-022-02475-8
Estrada-Meza, J., Videlo, J., Bron, C., Saint-Béat, C., Silva, M., Duboeuf, F., Peyruchaud, O., Rajas, F., Mithieux, G., & Gautier-Stein, A. (2021). Tamoxifen Treatment in the Neonatal Period Affects Glucose Homeostasis in Adult Mice in a Sex-Dependent Manner. Endocrinology, 162(7), bqab098. https://doi.org/10.1210/endocr/bqab098
Vassal, O., Del Carmine, P., Desgranges, F.-P., Bouvet, L., Lilot, M., Gadot, N., Timour-Chah, Q., & Chassard, D. (2018). Assessment of Neurological Toxicity of Hydroxyethyl Starch 130/0.4 Injected in the Intrathecal Space in Rats. Pain Medicine. https://doi.org/10.1093/pm/pny005
Julien, C., Oréa, V., Quintin, L., Piriou, V., & Barrès, C. (2017). Renal sympathetic nerve activity and vascular reactivity to phenylephrine after lipopolysaccharide administration in conscious rats. Physiological Reports, 5(4), e13139. https://doi.org/10.14814/phy2.13139
Aimond, G., Nicolle, S., Debret, R., Oréa, V., Josset-Lamaugarny, A., Palierne, J.-F., Sommer, P., Sigaudo-Roussel, D., & Fromy, B. (2023). Dill Extract Preserves Dermal Elastic Fiber Network and Functionality: Implication of Elafin. Skin Pharmacology and Physiology, 36(5), 249–258. https://doi.org/10.1159/000534248
Belotti, E., Lacoste, N., Iftikhar, A., Simonet, T., Papin, C., Osseni, A., Streichenberger, N., Mari, P.-O., Girard, E., Graies, M., Giglia-Mari, G., Dimitrov, S., Hamiche, A., & Schaeffer, L. (2024). H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Research, 52(6), 3031–3049. https://doi.org/10.1093/nar/gkae020
Neggazi, S., Hamlat, N., Berdja, S., Boumaza, S., Smail, L., Beylot, M., & Aouichat-Bouguerra, S. (2023). Hypothyroidism increases angiotensinogen gene expression associated with vascular smooth muscle cells cholesterol metabolism dysfunction and aorta remodeling in Psammomys obesus. Scientific Reports, 13(1), 19681. https://doi.org/10.1038/s41598-023-46899-y
Gouez, M., Rébillard, A., Thomas, A., Beaumel, S., Matera, E.-L., Gouraud, E., Orfila, L., Martin, B., Pérol, O., Chaveroux, C., Chirico, E. N., Dumontet, C., Fervers, B., & Pialoux, V. (2024). Combined effects of exercise and immuno-chemotherapy treatments on tumor growth in MC38 colorectal cancer-bearing mice. Frontiers in Immunology, 15, 1368550. https://doi.org/10.3389/fimmu.2024.1368550
Vily‐Petit, J., Soty‐Roca, M., Silva, M., Micoud, M., Evrard, F., Bron, C., Raffin, M., Beiroa, D., Nogueiras, R., Roussel, D., Gautier‐Stein, A., Rajas, F., Cota, D., & Mithieux, G. (2024). Antiobesity effects of intestinal gluconeogenesis are mediated by the brown adipose tissue sympathetic nervous system. Obesity, 32(4), 710–722. https://doi.org/10.1002/oby.23985